1. Если фототок прекращается при задерживающем напряжении $U_{\rm 3}$ = 2,25 B, то модуль макси-
мальной скорости υ_{max} фотоэлектронов равен:
1) $9.7 \cdot 10^5$ m/c 2) $8.9 \cdot 10^5$ m/c 3) $7.4 \cdot 10^5$ m/c 4) $6.2 \cdot 10^5$ m/c 5) $4.5 \cdot 10^5$ m/c
2. Если работа выхода электрона с поверхности цезия $A_{\text{вых}} = 3.0 \cdot 10^{-19}$ Дж, а энергия фотона, па-
дающего на этот металл, $E=5,0$ эB, то максимальная кинетическая энергия E_{κ}^{max} фотоэлектрона

- равна:
 - 1) $2,0\cdot 10^{-19}$ Дж 2) $3,0\cdot 10^{-19}$ Дж 3) $5,0\cdot 10^{-19}$ Дж 4) $7,0\cdot 10^{-19}$ Дж 5) $9,0 \cdot 10^{-19}$ Дж
- **3.** Если работа выхода электрона с поверхности цезия $A_{\text{вых}} = 1,6 \cdot 10^{-19}$ Дж, а энергия фотона, падающего на этот металл, $E=4.8\cdot 10^{-19}$ Дж, то максимальная кинетическая энергия $E_{\rm K}^{max}$ фотоэлектрона равна:
 - 1) 1,0 9B 2) 1,5 9B 3) 2,0 9B 4) 2,59B 5) 3,0 ₃B
- **4.** Если работа выхода электрона с поверхности цезия $A_{\text{вых}} = 3 \cdot 10^{-19}$ Дж, а максимальная кинетическая энергия фотоэлектрона $E_{\rm K}^{max}$ = 3,6 · 10⁻¹⁹ Дж, то частота v фотона, падающего на поверхность металла, равна:

- **5.** Если работа выхода электрона с поверхности цезия $A_{\text{вых}} = 2,4$ эВ, а максимальная кинетическая энергия фотоэлектрона $E_{\rm K}^{max}$ = 4 · 10⁻¹⁹ Дж, то энергияE фотона, падающего на поверхность металла, равна:
 - 3) 6.0 ₃B 5) 7,4 ₉B 1) 4,9 9B 2) 5,6 9B 4) 6.6 эВ
- **6.** Если работа выхода электрона с поверхности металла $A_{\rm BЫX} = 4.1 \cdot 10^{-19}$ Дж, а максимальная кинетическая энергия фотоэлектрона $E_{\rm K}^{max}$ = 2,4 · 10⁻¹⁹ Дж, то длина волны λ монохроматического света, падающего на поверхность металла, равна:
 - 1) 276 нм 2) 306 нм 3) 336 нм 4) 366 нм 5) 396 нм
- 7. Если для некоторого металла минимальная энергия фотонов, при которой возможен фотоэффект $E_{\min} = 4$ эВ, то при облучении этого металла фотонами, энергия которых E = 7 эВ, то максимальная кинетическая энергия фотоэлектронов E_{K}^{max} равна:
 - 2) 3 9B 3) 4 9B 4) 7 ₃B 5) 11 ₉B
- **8.** Катод фотоэлемента, работа выхода электрона с поверхности которого $A_{\text{вых}} = 2$ эВ, освещается монохроматическим излучением. Если задерживающее напряжение U_3 = 7 B, то энергия фотонов Eравна:
 - 1) 2 ₉B 2) 3 ₃B 3) 5 ₃B 4) 7 эB 5) 9 ₃B
- **9.** Если при облучении фотонами металла, для которого работа выхода $A_{\text{вых}} = 3$ эВ, максимальная кинетическая энергия фотоэлектронов $E_{\rm K}^{max}$ = 8 эВ, то энергия фотонов E равна:
 - 2) 3 9B 3) 5 9B 1) 2 ₉B 4) 8 ₃B 5) 11 ₃B
- **10.** Катод фотоэлемента облучается фотонами энергия которых E = 5 эВ. Если работа выхода электрона с поверхности фотокатода $A_{\text{вых}} = 4$ эВ, то задерживающее напряжение U_3 , равно:
 - 1) 1 B 2) 2 B 3) 4 B 4) 5 B 5) 9 B
- **11.** Катод фотоэлемента облучается фотонами энергия которых E = 11 эВ. Если минимальная энергия фотонов, при которой возможен фотоэффект $E_{\min} = 4$ эВ, то задерживающее напряжение U_3 , равно:

12. Фотоэлектроны, выбиваемые с поверхности металла светом с длиной волны $\lambda=330$ нм, полностью задерживаются, когда разность потенциалов между электродами фотоэлемента $U_3=1,76$ В. Длина волны $\lambda_{\rm K}$, соответствующая красной границе фотоэффекта, равна:

1) 385 нм 2) 470 нм 3) 619 нм 4) 650 нм 5) 774 нм

13. Поверхность металла освещают светом с длиной волны $\lambda = 250$ нм. Если длина волны, соответствующая красной границе фотоэффекта для данного металла, $\lambda_{\rm K} = 332$ нм, то задерживающая разность потенциалов U_3 между электродами фотоэлемента равна:

1) 1,23 B 2) 2,70 B 3) 3,05 B 4) 3,54 B 5) 8,70 B

14. Длина волны, соответствующая красной границе фотоэффекта для металла, $\lambda_{\rm K} = 577$ нм. Если фотоэлектроны полностью задерживаются, когда разность потенциалов между электродами фотоэлемента $U_3 = 2,28$ В, то поверхность металла освещают светом с длиной волны λ , равной:

1) 280 нм 2) 319 нм 3) 332 нм 4) 540 нм 5) 550 нм

15. Если красная граница фотоэффекта для некоторого металла соответствует длине волны $\lambda_{\rm K}$ = 621,5 нм, то работа выхода $A_{\rm Bыx}$ электрона с поверхности этого металла равна:

1) 1,0 9B 2) 1,4 9B 3) 1,7 9B 4) 2,0 9B 5) 2,4 9B

16. Если работа выхода электрона с поверхности некоторого металла $A_{\text{вых}} = 3,9 \cdot 10^{-19} \text{ Дж}$, то красная граница фотоэффекта υ_{\min} для этого металла равна:

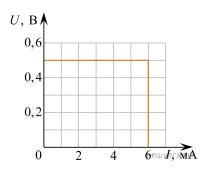
1) $3, 2 \cdot 10^{14} \, \text{гц}$ 2) $4, 5 \cdot 10^{14} \, \text{гц}$ 3) $5, 9 \cdot 10^{14} \, \text{гц}$ 4) $6, 1 \cdot 10^{14} \, \text{гц}$ 5) $7, 4 \cdot 10^{14} \, \text{гц}$

17. На экране, расположенном на одинаковом расстоянии от двух точечных источников когерентных световых волн, получена интерференционная картина (см. рис.). Если разность фаз волн в точке 1 равна нулю, то в точке 2 разность фаз волн равна:

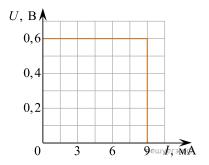
1) 0 2) π 3) 2π 4) 3π 5) 4π

18. При фотоэффекте работа выхода $A_{\rm вых}$ электрона из вещества, длина волны λ излучения, падающего на поверхность вещества, и максимальная кинетическая энергия $E_{\rm k\,max}$ электрона, вылетевшего из вещества, связаны соотношением, обозначенным цифрой:

1)
$$E_{\text{Kmax}} = -\frac{hc}{\lambda} - A_{\text{Bbix}}$$
 2) $E_{\text{Kmax}} = A_{\text{Bbix}} + \frac{hc}{\lambda}$ 3) $E_{\text{Kmax}} = \frac{hc}{\lambda} - A_{\text{Bbix}}$ 4) $E_{\text{Kmax}} = A_{\text{Bbix}} - \frac{hc}{\lambda}$ 5) $E_{\text{Kmax}} = \sqrt{A_{\text{Bbix}}^2 + \left(\frac{hc}{\lambda}\right)^2}$

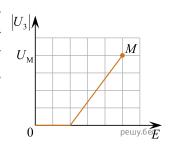

19. Энергия E фотона, вызвавшего фотоэффект, работа выхода $A_{\rm Bыx}$ электрона из вещества, максимальная скорость $v_{\rm max}$ электрона, вылетевшего из вещества, и масса m электрона связаны соотношением, обозначенным цифрой:

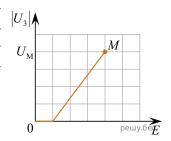
1)
$$\frac{mv_{\text{max}}^2}{2} = A_{\text{BMX}} + E$$
 2) $\frac{mv_{\text{max}}^2}{2} = E - A_{\text{BMX}}$ 3) $\frac{mv_{\text{max}}^2}{2} = -E - A_{\text{BMX}}$ 4) $\frac{mv_{\text{max}}^2}{2} = \sqrt{A_{\text{max}}^2 + E^2}$ 5) $\frac{mv_{\text{max}}^2}{2} = A_{\text{BMX}} - E$


20. Если работа выхода фотоэлектрона с поверхности кадмия $A_{\rm BMX}=4.1\cdot10^{-19}$ Дж, то длина волны $\lambda_{\rm K}$, соответствующая красной границе фотоэффекта для этого металла, равна:

1) 410 нм; 2) 435 нм; 3) 460 нм; 4) 485 нм; 5) 510 нм.

- **21.** На катод вакуумного фотоэлемента, изготовленного из никеля $(A_{\text{вых}} = 4, 5 \text{ эB})$, падает монохроматическое излучение. Если фототок прекращается при задерживающем напряжении $U_3 = 7, 5 \text{ B}$, то энергия E падающих фотонов равна ... эВ.
- **22.** Если работа выхода электрона с поверхности цинка $A_{\rm вых}=3,7$ эВ составляет $n=\frac{1}{4}$ часть от энергии падающего фотона, то максимальная кинетическая энергия E_k^{max} фотоэлектрона равна ... эВ.
- **23.** Если работа выхода электрона с поверхности цинка $A_{\text{вых}} = 2,2$ эВ составляет $n = \frac{1}{6}$ часть от энергии падающего фотона, то максимальная кинетическая энергия E_k^{max} фотоэлектрона равна ... эВ.
- **24.** Если работа выхода электрона с поверхности вольфрама $A_{\text{вых}} = 4,5$ эВ составляет $n = \frac{1}{5}$ часть от энергии падающего фотона, то максимальная кинетическая энергия E_k^{max} фотоэлектрона равна ... эВ.
- **25.** На катод вакуумного фотоэлемента, изготовленного из серебра $(A_{\text{вых}}=4,3\,\,{}^{\circ}\mathrm{B})$, падает монохроматическое излучение. Если фототок прекращается при задерживающем напряжении $U_3=9,7\,\,\mathrm{B}$, то энергия E фотонов падающего излучения равна ... ${}^{\circ}\mathrm{B}$.
- **26.** В идеализированной модели фотоэлемента на фотокатод падает электромагнитное излучение с длиной волны $\lambda=400$ нм постоянной мощностью P. Фотоэлектроны, вырванные под действием этого излучения с поверхности фотокатода, движутся с одинаковой скоростью в направлении анода. На рисунке изображена зависимость напряжения U на фотоэлементе от силы тока I в цепи, полученная после подключения фотоэлемента к реостату и изменения сопротивления реостата от $R_{\min}=0$ Ом до бесконечно большого значения. Если каждый фотон, падающий на фотоэлемент, вырывает один фотоэлектрон, то максимальная доля энергии падающего излучения, превращаемая в электрическую энергию, равна ... %.


27. В идеализированной модели фотоэлемента на фотокатод падает электромагнитное излучение с длиной волны $\lambda=435\,$ нм постоянной мощностью P. Фотоэлектроны, вырванные под действием этого излучения с поверхности фотокатода, движутся с одинаковой скоростью в направлении анода. На рисунке изображена зависимость напряжения U на фотоэлементе от силы тока I в цепи, полученная после подключения фотоэлемента к реостату и изменения сопротивления реостата от $R_{\min}=0\,$ Ом до бесконечно большого значения. Если каждый фотон, падающий на фотоэлемент, вырывает один фотоэлектрон, то максимальная доля энергии падающего излучения, превращаемая в электрическую энергию, равна ... %.


28. Электромагнитное излучение длиной волны $\lambda = 200$ нм падает на поверхность калия, красная граница фотоэффекта для которого $v_{\min} = 5.3 \cdot 10^{14}$ Гц. Максимальная кинетическая энергия E^{\max}_{k} фотоэлектрона равна ... эВ.

Ответ запишите в электрон-вольтах, округлив до целых.

- **29.** Электромагнитное излучение длиной волны $\lambda = 194$ нм падает на поверхность платины, красная граница фотоэффекта для которой $v_{\min} = 1.3 \cdot 10^{15}$ Гц. Максимальная кинетическая энергия фотоэлектрона равна ... эВ. *Ответ запишите в электрон-вольтах, округлив до целых*.
- **30.** На рисунке представлен график зависимости модуля задерживающего напряжения $|U_3|$ на фотоэлементе от энергии E фотонов, падающих на фотокатод. Если задерживающее напряжение $U_{\rm M}$ получено при энергии фотонов E=5 эВ, то максимальная кинетическая энергия $E_{\rm K}^{\rm max}$ электронов, покидающих поверхность фотокатода, равна ... эВ.

31. На рисунке представлен график зависимости модуля задерживающего напряжения U_3 на фотоэлементе от энергии E фотонов, падающих на фотокатод. Если максимальной кинетической энергии фотоэлектронов, вырывавшихся с поверхности катода, $E_k^{\max}=6$ эВ соответствует задерживающее напряжение U_{M} то работа выхода электрона $A_{\mathrm{Bыx}}$ равна ... эВ.

